发布网友 发布时间:2022-04-22 00:37
共1个回答
热心网友 时间:2024-08-11 12:22
当a>0且a≠1时,m>0,n>0,那么:
(1)log(a)(mn)=log(a)(m)+log(a)(n);
(2)log(a)(m/n)=log(a)(m)-log(a)(n);
(3)log(a)(m^n)=nlog(a)(m)
(n∈r)
(4)log(a^n)(m)=1/nlog(a)(m)(n∈r)
(5)换底公式:log(a)m=log(b)m/log(b)a
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)n=n;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)m^(1/n)=(1/n)log(a)m
,
log(a)m^(-1/n)=(-1/n)log(a)m
2.log(a)m^(m/n)=(m/n)log(a)m
,
log(a)m^(-m/n)=(-m/n)log(a)m
3.log(a^n)m^n=log(a)m
,
log(a^n)m^m=(m/n)log(a)m
4.log(以
n次根号下的a
为底)(以
n次根号下的m
为真数)=log(a)m
,
log(以
n次根号下的a
为底)(以
m次根号下的m
为真数)=(n/m)log(a)m
5.log(a)b×log(b)c×log(c)a=1
对数与指数之间的关系
当a>0且a≠1时,a^x=n
x=㏒(a)n
慢慢看吧
热心网友 时间:2024-08-11 12:29
当a>0且a≠1时,m>0,n>0,那么:
(1)log(a)(mn)=log(a)(m)+log(a)(n);
(2)log(a)(m/n)=log(a)(m)-log(a)(n);
(3)log(a)(m^n)=nlog(a)(m)
(n∈r)
(4)log(a^n)(m)=1/nlog(a)(m)(n∈r)
(5)换底公式:log(a)m=log(b)m/log(b)a
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)n=n;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)m^(1/n)=(1/n)log(a)m
,
log(a)m^(-1/n)=(-1/n)log(a)m
2.log(a)m^(m/n)=(m/n)log(a)m
,
log(a)m^(-m/n)=(-m/n)log(a)m
3.log(a^n)m^n=log(a)m
,
log(a^n)m^m=(m/n)log(a)m
4.log(以
n次根号下的a
为底)(以
n次根号下的m
为真数)=log(a)m
,
log(以
n次根号下的a
为底)(以
m次根号下的m
为真数)=(n/m)log(a)m
5.log(a)b×log(b)c×log(c)a=1
对数与指数之间的关系
当a>0且a≠1时,a^x=n
x=㏒(a)n
慢慢看吧