发布网友 发布时间:2022-04-22 00:37
共2个回答
热心网友 时间:2023-10-02 15:49
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M
,
log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M
,
log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M
,
log(a^n)M^m=(m/n)log(a)M
4.log(以
n次根号下的a
为底)(以
n次根号下的M
为真数)=log(a)M
,
log(以
n次根号下的a
为底)(以
m次根号下的M
为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
对数与指数之间的关系
当a>0且a≠1时,a^x=N
x=㏒(a)N
慢慢看吧
热心网友 时间:2023-10-02 15:49
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(mn)=log(a)(m)
log(a)(n);
4、log(a)(m÷n)=log(a)(m)-log(a)(n);
5、log(a)(m^n)=nlog(a)(m)
6、log(a^n)m=1/nlog(a)(m)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
3、mn=m×n
由基本性质1(换掉m和n)
a^[log(a)(mn)]=a^[log(a)(m)]×a^[log(a)(n)]=(m)*(n)
由指数的性质
a^[log(a)(mn)]=a^{[log(a)(m)]
[log(a)(n)]}
两种方法只是性质不同,采用方法依实际情况而定
又因为指数函数是单调函数,所以
log(a)(mn)=log(a)(m)
log(a)(n)
4、与(3)类似处理
mn=m÷n
由基本性质1(换掉m和n)
a^[log(a)(m÷n)]=a^[log(a)(m)]÷a^[log(a)(n)]
由指数的性质
a^[log(a)(m÷n)]=a^{[log(a)(m)]-[log(a)(n)]}
又因为指数函数是单调函数,所以
log(a)(m÷n)=log(a)(m)-log(a)(n)
5、与(3)类似处理
m^n=m^n
由基本性质1(换掉m)
a^[log(a)(m^n)]={a^[log(a)(m)]}^n
由指数的性质
a^[log(a)(m^n)]=a^{[log(a)(m)]*n}
又因为指数函数是单调函数,所以
log(a)(m^n)=nlog(a)(m)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m)=[m×ln(b)]÷[n×ln(a)]=(m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]