这个神奇的库,可以将数据平滑化并找到异常点

发布网友 发布时间:2024-09-28 08:13

我来回答

1个回答

热心网友 时间:9分钟前

在处理数据的时候,我们经常会遇到一些非连续的散点时间序列数据:

有些时候,这样的散点数据是不利于我们进行数据的聚类和预测的。因此我们需要把它们平滑化,如下图所示:

如果我们将散点及其范围区间都去除,平滑后的效果如下:

这样的时序数据是不是看起来舒服多了?此外,使用平滑后的时序数据去做聚类或预测或许有令人惊艳的效果,因为它去除了一些偏差值并细化了数据的分布范围。

如果我们自己开发一个这样的平滑工具,会耗费不少的时间。因为平滑的技术有很多种,你需要一个个地去研究,找到最合适的技术并编写代码,这是一个非常耗时的过程。平滑技术包括但不限于:

指数平滑

具有各种窗口类型(常数、汉宁、汉明、巴特利特、布莱克曼)的卷积平滑

傅立叶变换的频谱平滑

多项式平滑

各种样条平滑(线性、三次、自然三次)

高斯平滑

二进制平滑

所幸,有大佬已经为我们实现好了时间序列的这些平滑技术,并在GitHub上开源了这份模块的代码——它就是 Tsmoothie 模块。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点。

请选择以下任一种方式输入命令安装依赖:\

Windows 环境 打开 Cmd (开始-运行-CMD)。\

MacOS 环境 打开 Terminal (command+空格输入Terminal)。\

如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install tsmoothie

(PS) Tsmoothie 仅支持Python 3.6 及以上的版本。

2.Tsmoothie 基本使用

为了尝试Tsmoothie的效果,我们需要生成随机数据:

import numpy as npimport matplotlib.pyplot as pltfrom tsmoothie.utils_func import sim_randomwalkfrom tsmoothie.smoother import LowessSmoother# 生成 3 个长度为200的随机数据组np.random.seed(123)data = sim_randomwalk(n_series=3, timesteps=200,process_noise=10, measure_noise=30)

然后使用Tsmoothie执行平滑化:

# 平滑smoother = LowessSmoother(smooth_fraction=0.1, iterations=1)smoother.smooth(data)

通过 smoother.smooth_data 你就可以获取平滑后的数据:

print(smoother.smooth_data)# [[ 5.21462928 3.078076 0.939336 -1.19847767 -3.32294934# -5.40678762 -7.42425709 -9.361502 -11.235917 -13.05271523# ....... ....... ....... ....... ....... ]]

绘制效果图:

3.基于Tsmoothie的极端异常值检测

事实上,基于smoother生成的范围区域,我们可以进行异常值的检测:

可以看到,在蓝色范围以外的点,都属于异常值。我们可以轻易地将这些异常值标红或记录,以便后续的处理。

_low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)series['low'] = np.hstack([series['low'], _low[:,[-1]]])series['up'] = np.hstack([series['up'], _up[:,[-1]]])is_anomaly = np.logical_or(series['original'][:,-1] > series['up'][:,-1],series['original'][:,-1] < series['low'][:,-1]).reshape(-1,1)

假设蓝色范围interval的最大值为up、最小值为low,如果存在 data > up 或 data < low 则表明此数据是异常点。

使用以下代码通过滚动数据点进行平滑化和异常检测,就能保存得到上方的GIF动图。

上滑查看更多代码

# Origin: https://github.com/cerlymarco/MEDIUM_NoteBook/blob/master/Anomaly_Detection_RealTime/Anomaly_Detection_RealTime.ipynbimport numpy as npimport matplotlib.pyplot as pltfrom celluloid import Camerafrom collections import defaultdictfrom functools import partialfrom tqdm import tqdmfrom tsmoothie.utils_func import sim_randomwalk, sim_seasonal_datafrom tsmoothie.smoother import *def plot_history(ax, i, is_anomaly, window_len, color='blue', **pltargs):posrange = np.arange(0,i)ax.fill_between(posrange[window_len:],pltargs['low'][1:], pltargs['up'][1:],color=color, alpha=0.2)if is_anomaly:ax.scatter(i-1, pltargs['original'][-1], c='red')else:ax.scatter(i-1, pltargs['original'][-1], c='black')ax.scatter(i-1, pltargs['smooth'][-1], c=color)ax.plot(posrange, pltargs['original'][1:], '.k')ax.plot(posrange[window_len:],pltargs['smooth'][1:], color=color, linewidth=3)if 'ano_id' in pltargs.keys():if pltargs['ano_id'].sum()>0:not_zeros = pltargs['ano_id'][pltargs['ano_id']!=0] -1ax.scatter(not_zeros, pltargs['original'][1:][not_zeros], c='red', alpha=1.)np.random.seed(42)n_series, timesteps = 3, 200data = sim_randomwalk(n_series=n_series, timesteps=timesteps,process_noise=10, measure_noise=30)window_len = 20fig = plt.figure(figsize=(18,10))camera = Camera(fig)axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)]series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32'))for i in tqdm(range(timesteps+1), total=(timesteps+1)):if i>window_len:smoother = ConvolutionSmoother(window_len=window_len, window_type='ones')smoother.smooth(series['original'][:,-window_len:])series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]])_low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)series['low'] = np.hstack([series['low'], _low[:,[-1]]])series['up'] = np.hstack([series['up'], _up[:,[-1]]])is_anomaly = np.logical_or(series['original'][:,-1] > series['up'][:,-1],series['original'][:,-1] < series['low'][:,-1]).reshape(-1,1)if is_anomaly.any():series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int)for s in range(n_series):pltargs = {k:v[s,:] for k,v in series.items()}plot_history(axes[s], i, is_anomaly[s], window_len, **pltargs)camera.snap()if i>=timesteps:continueseries['original'] = np.hstack([series['original'], data[:,[i]]])print('CREATING GIF...') # it may take a few secondscamera._photos = [camera._photos[-1]] + camera._photosanimation = camera.animate()animation.save('animation1.gif', codec="gif", writer='imagemagick')plt.close(fig)print('DONE')

注意,异常点并非都是负面作用,在不同的应用场景下,它们可能代表了不同的意义。

比如在股票中,它或许可以代表着震荡行情中某种趋势反转的信号。

或者在家庭用电量分析中,它可能代表着某个时刻的用电峰值,根据这个峰值我们可以此时此刻开启了什么样的电器。

所以异常点的作用需要根据不同应用场景进行不同的分析,才能找到它真正的价值。

总而言之,Tsmoothie 不仅可以使用多种平滑技术平滑化我们的时序数据,让我们的模型训练更加有效,还可以根据平滑结果找出数据中的离群点,是我们做数据分析和研究的一个好帮手,非常有价值。

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,可以关注公众号:Python编程学习圈,了解更多编程技术干货。

原文:https://juejin.cn/post/7107065863676788773

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com