设f(x)在【a,b】连续,f(x)=∫axtf(t)dt(a<=x<=b),则f'(x)=

发布网友 发布时间:2024-10-24 12:22

我来回答

1个回答

热心网友 时间:2024-10-30 21:58

设H(x)为f(x)的一个原函数
则∫(a->x)f(t)dt=H(x)-H(a)
[∫(a->x)f(t)dt]’=H’(x)=f(x)
欲证
F’(x)≤0 ⟺
{[∫(a->x)f(t)dt]/(x-a)]’ ≤0⟺
H’(x)(x-a)-∫(a->x)f(t)dt≤0⟺
H’(x)(x-a) ≤ H(x)-H(a) ⟺
H’(x)≤[ H(x)-H(a)]/(x-a) ⟺
H’(x) ≤ H’(w) (w∈[a,x]) ⟺
即f(x) ≤f(w) (w≤x)
此有f’(x) ≤0知函数单调递减易知

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com