已知联合概率分布函数求值域。

发布网友 发布时间:2024-10-24 09:49

我来回答

1个回答

热心网友 时间:2024-11-21 18:56

答案为:F(a,b)+1-[F1(a)+F2(b)]

由于F(a,b)=P{X≤a,Y≤b},F1(a)=P{X≤a,Y<+∞},F2(b)=P{X<+∞,Y≤b},

而:

P{X>a,Y>b}=P{X<+∞,Y<+∞}-P{X≤a,Y<+∞}-P{X<+∞,Y≤b}+P{X≤a,Y≤b}

∴P{X>a,Y>b}=1-F1(a)-F2(b)+F(a,b)=F(a,b)+1-[F1(a)+F2(b)]

扩展资料:

联合概率分布的几何意义与定义

设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:

F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)

称为:二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。 

如果将二维随机变量(X,Y)看成是平面上随机点的坐标,那么分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左下方的无穷矩形域内的概率。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com